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Abstract .  In this paper we study some geometrical properties of gradient vec- 
tor fields on cosymplectic manifolds, thereby emphasizing the close analogv with 
Hamiltonian systems on symplectic manifolds. I t  is shown that gradient vector fields 

grangian submanifolds of the tangent bundle with respect to an induced symplectic 
structure. In addition, the syqmetry and reduction propertie of gradient vector 
fields are investigated. 
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1. Introduction 

Canonical manifolds have been identified and studied by Licbnerowicz as the natu- 
ral geometrical framework for the description of time-dependent mechanical systems 
(see, for example [l, 21 and, for a view on the physical applications, see also [3]). A 
canonical manifold is a Poisson manifold of constant rank, fihred over R (the 'time- 
axis') and such that the connected components of the fibres are symplectic leaves of 

been investigated by Flato e t  a/  [4]. Lie group actions on a canonical manifold and 
the concept of momentum map in this framework have been studied by Marle [5]. A 
particular class of canonical manifolds consists of those possessing a closed 2-form, the 
restriction of which to each fibre yields the symplectic form induced by the Poisson 
structure. Canonical manifolds with a closed 2-form correspond to what are elsewhere 
*Iln e911.,d *n.l.mnlort;r mnn;fnlrlc Ir f  rRl\  In II rorpnt nnnm Alhart 171 h.0 nnnnlnl;.larl 
OI.O"CCI.LLU I..Y,..,Y.Y" ,bL Ly,,' *.. y . ' ~ . , . L " y y y - ~ ,  I - l Y l . "  L.,..-L..."LU.LY'Y 

the Marsden-Weinstein reduction theory for symplectic manifolds with symmetry to 
cosymplectic manifolds and to general contact manifolds. In doing so he has con- 
ceived a unified approach to cosymplectic and contact structures by identifying them 
as limiting cases of a 'transitive almost contact structure'. 

In this paper we wish to focus our attention on a special class of vector fields on 
a cosymp!ect,ic m-anifold which, following Albert, will he called gradient vector fields, 
In particular, it is our intention to point out  some close similarities between gradient 
vector fields on a cosymplectic manifold and (global) Hamiltonian vector fields on 
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a symplectic manifold (the latter being the gradient vector fields of the symplectic 
structure). 

First of all, it will be shown that gradient vector fields can be characterized in t e r m  
of a Lagrangian submanifold of the tangent bundle with respect to an appropriate 
symplectic structure. This property is well known in symplectic geometry, mainly due 
to the work of Tulczyjew [8,9], and is in fact common to all gradient vector fields with 
respect to a non-degenerate covariant 2-tensor field (not necessarily skew-symmetric), 
Moreover, this property naturally leads us to introduce the notion of a local gradient 
vector field, the cosymplectic analogue of the local Hamiltonian vector field. 

Secondly, starting from Albert's reduction theorem for cosymplectic manifolds, we 
will demonstrate that for gradient vector fields with symmetry one can establish a re- 
duction scheme which is similar to the well known reduction procedure for Hamiltonian 
systems with symmetry [ lo ,  111. 

In section 2 we briefly recall some definitions and properties related to cosymplectic 
structures. Section 3 is devoted to the description of gradient and local gradient 
vector fields in terms of Lagrangian submanifolds of the tangent bundle. In section 4 
we investigate the symmetry and reductibn properties of gradient vector fields. This 
analysis is then further extended to the case of local gradient vector fields in section 5. 
We conclude in section 6 with a few additional remarks. 

Throughout this paper, all manifolds, maps, vector fields and differential forms 
are assumed to be of class C". The sets of vector fields and differential forms over 
a manifold M are denoted by X ( M )  and A ( M ) ,  respectively. For X E X ( M )  and 
oi E A ( M )  we write ixoi for the inner product (or also (X,a), in case oi is a 1-form) 
and LXoi for the Lie derivative of a with respect to X. The tangent map of a map 
f :  M - N will be denoted by T f :  T M  - T N .  

2. Cosymplect ic  manifolds  

A cosymplectic manifold is a triple ( M , 8 , w )  consisting of a smooth (2n + 1)- 
dimensional manifold M with a closed 1-form 9 and a closed 2-form w ,  such that 
9Aw" # 0 (see e.g. [7]). In particular, 8 A w n  yields a volume form on M .  In the case 
where 8 is exact we are precisely dealing with a canonical manifold with closed 2-form 
in the sense of [l, 51. The standard example of a cosymplectic manifold is provided 
by an 'extended cotangent bundle' (W x T*N,dt , r 'R,) ,  with 1 : R x T" -+ R and 
r : R x T ' N  -+ T'N the canonical projections and R, the canonical symplectic form 
on T". 

Let M be a manifold and let 8 E A1(M)  and w E A 2 ( M )  be given, with d9 = 0 
and dw = 0. Consider the bundle homomorphism 

. . T M  + T ' M  z) E T,M + xs,,(u) = i ,w(z)  + ( i , 9 ( ~ ) ) 8 ( ~ ) .  (2.1) 

Then we have the following important characterization of cosymplectic (and symplec- 
tic) manifolds. 

Proposition 1 (cf 171). (i) If ( M , 9 , w )  is cosymplectic, then x s , ,  is a smooth vector 
bundle isomorphism. 

(ii) If xs,w is a smooth vector bundle isomorphism, then either ( M , B , w )  is a 
cosymplectic manifold, in which case M is odd dimensional, or ( M , w )  is a symplectic 
manifold. in which case M is even dimensional. 
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According to this proposition it is clear that  geometrical objects and properties related 
to a structure ( M ,  8, w ) ,  with 0 a closed 1-form and w a closed 2-form on M such that 
xe,+, is an isomorphism, yield a cosymplectic (i.e. odd-dimensional) and a symplectic 
(i.e. even-dimensional) transcription. In the following we will confine ourselves to 
the cosymplectic case. For the following definitions and properties on cosymplectic 
manifolds, we again refer to [7]. 

Let ( M ,  8, w )  be a (2n + 1)-dimensional cosymplectic manifold. On M there exists 
a distinguished vector field R, the Reeb vector field, defined by 

i , B =  1 i,w = 0 (2.2) 

i.e. R = xS,: o 0 in terms of the bundle isomorphism (2.1). The manifold M admits 
an atlas of canonical ('Darboux') charts: in the neighbourhood of every point one can 
determine canonical coordinates ( t , q ' , p i ) ,  i = 1, . _ _  , n ,  such that 

e = dt w = dq' Adpi. (2.3) 

grad f = x;,: o d f .  

Equivalently, one has (cf [7]) 

i,,,f@ = R(f)  ig,,,/w = d f  - R(f)@, 

In canonical coordinates we find 

In terms of canonical coordinates, the Reeb vector field (2.2) reads R = a / &  
By means of the isomorphism xg ,w one can associate with every function f E 

C " ( M )  a vector field grad f on M ,  called the gradienl vector field, which is defined 
by 

(2.4) 

af a a j  a af a 
at a t  api apt aqi api grad f = -- + -- - -- 

On Cm(M) one can define a Poisson bracket by 

{f,s} = w(gradf,gradg).  

This induces a Poisson structure on ( M , O , w ) ,  the symplectic Lves of which are 
precisely the leaves of the integrable distribution ker8. With every f E Cm(M) one 
can also associate a Hamiltonian vector field X r  according to 

(2.7) 

In canonical coordinates X, reads 
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One can show that the assignment C m ( M )  + X ( M ) ,  f i X, is a Lie algebra anti- 
homomorphism with respect to the Poisson bracket (2.6) and the commutator of vector 
fields, i.e. 

X{f,r) = -[xf~x,l 

iX, = igrad f w  for all f E C"W) 

(see [7]). From (2.5) and (2 .7)  it is readily seen that 

and 

X I  =grad  f iff R(f) = 0 

The vector field E - R+XI is sometimes called the evolulron vectorfield correspond- 
ing to  f [5 ] .  In canonical coordinates we recognize the expression of a time-dependent 
Hamiltonian vector field, i.e. 

f -. 

An automorphism of the cosymplectic structure ( M ,  8, w )  is a diffeomorphism 4 : M+ 
M such that 

4'0 = 0 g*w = w 

These aut,omorphisms, a!so ca!!ed 'st,rong' automor~hisms~ form a subgroup of the 
group of 'weak' automorphisms which are characterized by Q'O = 0 and 4*w = w - 
dh, A 0 for some he E C"(M) .  The weak automorphisms correspond to  the global 
canonical transformation in the sense of Lichnerowicz [l]. A (strong) infinitesimal 
automorphism of the cosymplectic structure is a vector field X on M such that 

CXB = 0 c x w  = 0. (2.9) 

The infinitesimal automorphisms constitute a Lie suhalgebra of X ( M ) .  Note that 
a Hamiltonian vector field X,, as well as the corresponding evolution vector field 
E,, will be an infinitesimal automorphism iff 0 A dR(f) = 0 and thus, in particular, 
if R(f) = 0 (i.e. if f is 'time independent'). It can be shown, however, that  the 
Hamiltonian vector fields determine an ideal of the Lie algebra of weak infinitesimal 
automorphisms, the latter being characterized by C x 8  = 0 and Lxw = 0 A dh, for 
some h ,  E Cm(M) (cf [7], proposition 3). 

3. Gradient vec tor  fields and Lagrangian submanifolds  

Given a cosymplectic manifold ( M , O , w ) ,  the map xs,w defined by (2 .1)  is a vector 
bundle isomorphism over the identity from T M  to T ' M .  One can see that xePw is 
in fact induced by the non-degenerate covariant 2-tensor field w + B @ 0 on M .  Let 
R, = -de, denote the canonical syniplectic form on T ' M ,  with 0, the canonical 
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(or LiouviUe) 1-form. By means of the isomorphism x ~ , ~  one can pull-back QM to 
T M ,  i.e. 

'0 = Xip'M 

and $2, clearly yields a symplectic form on T M .  We will derive another expression for 
Q,, explicitly in terms of B and w .  Before doing so we first make a small digression 
into the theory of derivations of forms. 

Let N be an arbitrary smooth manifold. Following Tulczyjew, one can define two 
derivations, iT and dT from A ( N )  into A ( T N )  of degree -1 and 0, respectively (see 
e.g. [a]). Given a pform 01 on N ,  iTu is a ( p  - 1)-form on T N  defined by 

iTO1(U)(wl , '  ' .  ! '+l) = ulv '"  1 ~ p - 1 )  (3.1) 

where U E T,N, wi E T,(TN) and ui = T7"(wi) for i = 1,. , . , p  - 1, with rN : 
T N  -+ N the tangent bundle projection. In particular, i T f  = 0 for functions (by 
convention) and if cr is a 1-form, iTm(v)  = (v ,a(r"(v) ) )  where, as usual, ( ,  ) denotes 
the natural pairing between vectors and covectors. If 01 E A 1 ( N )  is locally rzpresented 
by 01 = ai(q)dqi, then, in natural bundle coordinates (q i ,  U') on T N ,  i,o = ai (q)v i .  
The derivative operator dT : A ( N )  -+ A ( T N )  is defined by 

d , = i , d + d i , .  

Alternatively, one can say that i, and dT are derivations along rN of type i, and 
d t ,  respectively, induced by the vector field T along rN which locally reads T = 
u'a/aq'  (see e.g. [12]). Furthermore, it should be noticed that for a E A ( N ) ,  d,u 
precisely corresponds to the comple te  Iifi of 01 to T N  in the sense of Yano and Ishihara 
[U], the latter being defined as follows. Let X be a vector field on N with (local) 
flow {#+). Then { T d , )  defines a (local) flow on T N  and its infinitesimal generator 
X c  E X ( T N )  is called the complete lift of X. In coordinates, if X = Xi B/aq' ,  then 

the function f' on T N  defined by f' = p z  o Tf where p z  : TR Z Iw x Iw -+ W is the 
projection onto the second factor. Let now 01 be an arbitrary pform on N ,  then its 
complete lift to 'I" is the pform 01' which is fully characterized by the property 

X' = Xi + (ax'/&$) U J  O/Bu'. The complete lift of a function f E C"(N)  is 

ayx;, " ',Xi) = ( a ( X , ,  " ' ,XP))C 

for any X i  E X ( N )  (cf [13]). 
expressions for instance, that  

One can then easily verify, using local coordinate 

01' = dT 0 1 .  

We now return to the cosymplectic manifold ( M ,  8 ,  w). The natural projections of 
T M  and T ' M  on M will be denoted by 7, and x,, respectively, and we recall that 
0, stands for the canonical Liouville I-form on T ' M .  

Propositton 2. It holds that 



180 F Canlrijn el  U /  

Proof 
and q = xg,, ( U), we have 

We will prove this relation pointwise. For any w E T ( T M ) ,  with w = ~ ~ ~ ( w )  

(w! ( X ' S , , % ) ( ~ ) )  = ( T x s , J w ) ,  @ M ( d )  

= ( T a M ( T X 8 , ~ ( w ) ) >  r T T . M ( T X B , w ( w ) ) )  

where the second equality follows from the defining property of the Liouville 1-form 
(see e.g. [lo]). Now, rT.,,, o T x ~ , ~  = xB,W orTM and xs being a bundle isomorphism 
over the identity, we also have that  = rM. Using the definition (2.1) of xe,,, 
the previous relation then becomes 

8.W 

(U> ( X ; , , @ M ) ( v N  = (TTM(w), XB,w(%f(w))) 

= w ( z ) ( T T M ( w ) , T ' M ( w ) )  

+ (%W(")I 0(2))(TTM(W)! +)) 

with z = rM(w). Finally, taking into account the definition (3.1) of the derivative 
operator i,, we obtain 

(w. (&@Jt)(~)) = (w, ( i T w ) ( w ) )  + iTS(v) (w.  (r.b@)(.B!!v)) 
= (w, (iTw + (iTo)(w)T,p)(w)). 

Since this holds for any w E T ( T M ) ,  the relation (3.2) readily follows. 0 

Taking the exterior derivative of both sides of (3.2) and recalling that both w and 0 
are closed, we immediately obtain, with CIM = - d e M :  

Corollary I .  
of a cosymplectic manifold ( M ,  @ , U ) ,  reads 

The symplectic form R, = x; WRM, induced on the tangent bundle T M  

Cl, = - (dTw + dTO A rb0). (3.3) 

Taking into account the above remark about the complete lift of differential forms and 
putting 0' = rho (i.e. the vertical lift of a) ,  (3.3) can still be rewritten as 

no = - (wc + BC A a y ) .  

This expression agrees with the one derived by Aniculzesei [14] for the structure of the 
tangent bundle of almost contact and almost cosymplectic manifolds. Let us denote 
the natural bundle coordinates on T M  corresponding to a canonical chart (t, q' ,pi) on 
M by (t ,p ' ,pi ,u,wi,wi).  Using the expressions (2.3) for0 andw, we find the following 
coordinate expression for Cl,: 

R, = dp, A dui - dq' A dwi + dt A du 

By construction is a symplectomorphism from ( T M , R , )  to (T*M,CIM).  More- 
over, one can infer from the definition (2.4) of a gradient vector field that for any 
f E Cm(M) the image of grad f is the pre-image under xs,W of the Lagrangian 
submanifold i m ( d f )  of ( T ' M ,  O h , ) .  This immediately implies: 
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Proposition 3. For each f E Cm(M), im(grad f )  is a Lagrangian submanifold of 
(TM,Q,) .  

(Recall that  a Lagrangian submanifold of a 2n-dimensional symplectic manifold ( N ,  0) 
is a n-dimensional submanifold L of N such that the restriction of Q to L vanishes. 
See, for instance, [lo, 111 for more details.) 

Note that  in case of a symplectic manifold (M,w), with B E 0, all the above 
reduces to the well known results about the induced symplectic structure on T M  and 
the characterization of Hamiltonian vector fields as Lagrangian sections of T M  (cf [E, 
91). As a matter of fact, the whole analysis applies to any manifold M equipped with a 
non-degenerate covariant 2-tensor field or, equivalently, a vector bundle isomorphism 
over the identity between T M  and T ' M ,  together with the corresponding concept of 
gradient vector field. 

The converse of proposition 3 does not hold in general, i.e. if a vector field X 
on a cosymplectic manifold determines a Lagrangian section of the tangent bundle, it 
need not be true that X is a gradient vector field. Again referring to the analogous 
situation in the symplectic case, we are naturally led to consider the notion of local 
gradient vector field. A vector field X on a cosymplectic manifold ( M ,  8, w) is called 
a local gradient veclorfield if ,ye,w o X yields a closed 1-form, i.e. 

d(i,w + ( i x B ) B )  = 0 

or, equivalently, since both w and B are closed, 

cxw = e A c,~. (3.4) 

Gradient vector fields are obviously local gradient vector fields. The set of local gradi- 
ent vector fields furthermore contains the Lie algebra of infinitesimal automorphisms 
(2.9). Although the local gradient vector fields do not form a Lie algebra, one can 
easily verify that the Lie bracket of an infinitesimal automorphism X and a local gra- 
dient vector field Y is again a local gradient vector field. Indeed, using (2.9) and (3.4) 
we find that 

~ I X , Y l W  = cxclfw 
= cx(e A cy@)  
= e A cfx,yle. 

We now arrive at  the main result of this sectioii, froiri which proposition 3 can in fact 
be derived as a corollary. 

Theorem 1. 
vector field iff i m ( X )  is a Lagrangian submanifold of (TM,Q,). 

Prooj Knowing that ,ye,y is a symplectic diffeomorphism, the result immediately 
follows from the definition of local gradient vector fields and the well known property 
that the image of a 1-form on M is a Lagrangian submanifold of ( T ' M ,  Q,) iff that  
1-form is closed. 0 

This theorem is the cosymplectic analogue of the characterization of local Hamiltonian 
vector fields on symplectic manifolds (cf 191). 

A vector field X on a cosymplectic manifold ( M ,  B,u) is a local gradient 



182 F Canirijn et ol 

4. S y m m e t r y  and reduct ion  of gradient vec tor  fields 

In this section we will be dealing with smooth left actions Q : G x M --t M of a Lie 
group G on a cosymplectic manifold ( M ,  8,w) .  It will always be tacitly assumed that 
both G and M are connected. The Lie algebra of G will be denoted by G and its 
dual by G*. For each g E G we put 7 @(g, .), the induced transformation on M .  
The fundamental vector field, or infinitesimal generator, associated with < E G is the 
vector fie:; tM on 1": :&Re: by 

An action @ of a Lie group G on a cosymplectic manifold (M,B ,u )  is called an 
automorphkm action, or G is said to be an automorphism group of ( M ,  0, w ) ,  if for 
each g E G the corresponding '3$ is an automorphism of the cosymplectic structure, 
i.e. 

@'8 = 8 '3;w = w .  
9 

!t ther. fo!!ow.- that the F ~ r . d a ~ ~ r . t . d  vecto: fie!& a x  infir.itzsi-a! anlomo:phis-s, i.e. 

for each < E G,  An automorphism action @ will be called a restricted Hamilionian 
action if furthermore, for each ( E G ,  the associated fundamental vector field cM is a 
Hamiltonian vector field with Hamiltonian Je  satisfying R(Jt) = 0, i.e. 

i ( M 8  = 0 iCMw = dJc.  (4.1) 

In canonical coordinates ( t ,  qi , p i ) ,  this still means that the functions Jc do not depend 
on the 'time' coordinate t .  We use the denomination 'restricted' Hamiltonian action 
to distingnish i? f rom ?hp more genera! Hami!tonian actions on canonica! manifolds 
studied by Marle [5], where no time independence of the Hamiltonians Jc is required. 
We can always arrange things such that the map ( 3 Je is R-linear. 

With a restricted Hamiltonian action one can associate a momentum map J :  M + 

G* defined in the usual way by 

( € , J ( z ) )  = J&) 

for all < E G. The non-uniqueness of the Hamiltonians Jt is reflected in the non- 
uniqueness of the momentum map. In [7] it has been shown that there always exists 
an affine action rI, of G on G* such that J is equ,ivariant with respect to @ and '€', i.e. 

J a @ "  = .Qn o J 

for each g E G. The affine action rI, is of the form 

q g b )  = Ad', P + " ( 9 )  P E G* 
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with Ad' the co-adjoint representation of G on 9' and U a (non-homogeneous) 1- 
cocycle of G with values in G * ,  given by o(g) = J ( G g ( z ) )  -Ad; ( J ( z ) ) .  The cohomol- 
ogy class of U only depends on the given action @ and not on the particular choice of 
the momentum map. 

For given p E 9' we denote by G, the isotropy group of p with respect to the 
affine action a. By equivariance of J i t  follows that J - ' [ p }  is an invariant subset 
for the restriction of Q to G,. Moreover, if p is a weakly regular value (and thus, in 
particular, a regular value) of J ,  then J - ' { p }  is a suhmanifold of M and @ induces 
a smooth action of G, on J - ' { p ) .  Following Libermaun and Marle [ll] we will 
say that this action is simple if the orbit space J - ' { p ) / G ,  admits a smooth manifo!d 
structure such that  the canonical projection ?r, : J - ' { p )  + J - ' { p } / G , ,  is  a surjective 
submersion. This will for instance be the case if the action is free and proper [lo]. In 
the following i t  will always be assumed that G, is connected such that the fibres of 
rP are also connected. (If this were not the case, one could simply restrict the further 
analysis to  the connected component of the identity of G,.) 

Albert has established the following cosymplectic reduction theorem which will 
play a central role in the further discussion. 

Theorem 2 (cf ['iJ). Given a restricted Hamiltonian action of a Lie group G on a 
cosympiectic maniioid ( M , S , w j  with momentum map J >  iet p E E' be a weakiy 
regular value of J and assume the induced action of G, on J - ' [ p }  is simple. Then 
the quotient space P, = J - ' { p ) / G r  admits a cosymplectic structure (8!,,w,) such 
that 

and j l w  = 7r.w r r  1'8 Ir = 7rl8, 

with j ,  : J - ' { p )  - M the inclusion map and ?iB : J - ' { p )  + P, the canonical 
projection. 

The main purpose of this section now consists in proving that in the case where 
a restricted Hamiltonian action defines a symmetry of a gradient vector field, then 
the latter gives rise to a gradient rect=r field 0:: the :ed-ced c~ay--p!ectic manifold 
(Pr ,8r ,Ur)  corresponding to  any weakly regular value p of the momentum map. This 
then yields the analogue of the Marsden-Weinstein reduction of a Hamiltonian system 
with symmetry on a symplectic manifold [lo, 111. 

An action 0 of a Lie group G on a cosymplectic manifold (M, 8, U) is said to  be a 
symmetry of a gradient vector field, grad f ,  if for each g E G 

@;(grad f) =grad  f 

This still implies (and, in view of the assumed connectedness of G, is equivalent to) 

[tM, grad f 1 = 0 

for each ( E 9. 

Proposition 4. 
manifotd(M,B,w). Then 
some real constant cE 

Let Q be an automorphism action of a Lie group G on a cosymplectic 
isasyrnnietryofbradf  i f f f o r e a c h t E G , t M ( f )  = c c  for 
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ProoJ By definition for a gradient vector field 

igraddfw + (igradf8)e = df. 

Taking the Lie derivative of both sides with respect to E M ,  and taking into account 
Le,@ = 0 and LcEnrw = 0, we obtain 

i[CM.graddf]W + (i[(M,gradf]e) ' = dEM(f) 

i.e 

X S , ~  0 [E~M.gradfl = dE,w(f). 

Now, xB,u  being.an isomorphism and since M is assumed to be connected, i t  follows 
that 

From this we immediately deduce the following. 

Corollary 2. If an automorphism action @ of G on a cosymplectic manifold ( M ,  0, w )  
leaves invariant a function f E C w ( M ) ,  i.e. @if = f for all g E G, then i t  is a 
symmetry of grad f .  

The next proposition also provides a basic ingredient in establishing a reduction prop- 
erty of gradient vector fields with symmetry. 

Proposition 5. Let @ : G x M -+ M be a restricted Hamiltonian action with momen- 
tum map J .  If @ leaves invariant a function f E C " ( M ) ,  then J is a @valued first 
integral of gradf (i.e. J is constant along the orbits of gradf) .  

Prooj 
Taking the contraction of both sides with gradf we find, with (2.5), 

According to (4.1), the fundamental vector fields E M  satisfy icMw = . d J  C '  

gradf(Jc)  = -itMigradp 

= -icM(df - W)@) 
= -F,w(f) + R(f)i(,o 

In view of (4.1) and the assumed invariance o f f ,  it follows that g r a d f ( J 0  = 0. Since 
this holds for each E G, we may indeed conclude that J is invariant under the flow 
of grad f .  0 

We can now state the following reduction theorem for gradient vector fields on cosym- 
plectic manifolds. 
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Theorem 3. Let 0 : Gx M - M be a restricted Uamiltonian action on a cosymplectic 
manifold ( M , B , w )  with momentum map J .  Let p E G* be a weakly regular value of J 
and assume the induced action of G, on J - I { p }  is simple such that the conditions of 
theorem 2 are verified. Then, i f f  E C"(M) is invariant under Q, grad f is tangent to 
J - ' { p ]  and its restriction t o  J - ' { p }  projects onto the reduced cosymplectic manifold 
(P,,  B,,,w,,). Moreover, its projection (grad f), is again a gradient vector field, i.e. 

(grad f ),, = grad f, 
for some f,, E Cm(P,) satisfying f l J - l { , )  = A; f, 

ProoJ Under the given assumptions it follows from proposition 5 that J - ' { p }  is an 
invariant submanifold of grad f .  Moreover, according to corollary 2,  the given action 
Q is a symmetry of gradf .  In particular, this implies that the induced action of 
G,, on J - ' { p }  commutes with the flow of grad fJJ-,(,). Hence, the latter induces 
canonically a flow on ?', and we denote its infinitesimal generator by (grad f),. The 
vector fields grad f I J-n{,l and (grad f), are a,-related. It is then straightforward to 
verify that 

(grad f), = X S , ' , ~ ,  0 df, 

with f,, being uniquely determined by f l J - l ( , l  = A; f,, A,, being a surjective submer- 
sion with connected fibres. 

(The argument is completely similar to the one used in the reduction theorem for 
Hamiltonian systems with symmetry on symplectic manifolds [lo, 111.) n 
Without going into details we will close this section by briefly sketching how the 
above reduction theorems 2 and 3 can be translated in terms of symplectic reductions, 
using the results of the previous section. For completeness, let us first recall that ,  
given a symplectic manifold ( N ,  a),  a sympleclic reduction is defined as a surjective 
submersion A : Nl - P from a submanifold N ,  of N onto another symplectic manifold 
( P , 6 ) ,  such that j ; Q  = ~ ' 6 ,  with j ,  : N I  + N the inclusion map (cf [ll,  151). 
Similarly, given'a cosymplectic manifold (M,B ,w) ,  we will say that a cosymplectic 
reduction is a surjective submersion A : MI -+ P ,  from a submanifold MI of M onto 
another cosymplectic manifold (P,F,G),  such that j ; S  = n'B and j ; w  = A'G, with 
j ,  : M ,  + M the inclusion map. Under the hypotheses of theorem 2 we now have that 
x,, : J - l { p }  - P,, is a cosymplectic reduction in the above sense. This clearly lifts 
t o  a symplectic reduction TA, : T J - ' { p }  - TP,, with TJ-'{p) a submanifold of 
the symplectic tangent bundle ( T M :  Q,) and TP, being equipped with the symplectic 
form 0, = ~ ; ~ , , ~ ( f i ~ ~  ) .  If, moreover, the conditions of theorem 3 are verified, then we 
see that im(grad f )  n T J - l { p }  = im(grad f l J - , ( , ) ) ,  and this submanifold is mapped 
by the symplectic reduction Tap onto the Lagrangian submanifold im(grad f,) of 

- 

(W, 1 0,). 

5. Local gradient vector  fields with  s y m m e t r y  

In this section we will study symmetries of local gradient vector fields on a cosym- 
plectic manifold. The treatment is mainly inspired by the symmetry analysis of local 
Hamiltonian systems on symplectic manifolds of Cariiiena and Ibort [16]. 
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Let us consider again a restricted Hamiltonian action Cg : G x M - M on a 
cosymplectic manifold (M, 0 , w ) .  By definition, the fundamental vector fields of this 
action are Hamiltonian with Hamiltonian functions that are invariant under the flow 
of the Reeb vector field R. From section 2 we then know that these vector fields are 
also gradient vector fields, i.e. for each < E G 

tM = X J C  = grad Jc 

with R(Jc)  = 0. On M there exists a Poisson structure ( , } defined by (2.6). Hence, 
we see that for any E ,  11 E G 

I J < , J q ) = w ( < M . V M )  

= q M M ( J < ) = - t M M ( J ~ ) .  (5.1) 

The map G - X ( M ) ,  E - tM is a Lie algebra anti-homomorphism, i.e. [<, qIM = 
-[tM,qM]. Computing the differential of Jlc,nl we find, using (4.1) and (5.1): 

dJ[<,lll = i1<,nlnrW = -i [ c M , t l M I W  
- - - c c M i n M W  

= -d<,w(JO) 

= d{Jcl Jnl 
Since M is still assumed to be connected i t  follows that 

J[C,?]  ={Jc>JnI+C(€>11)  (5.2) 
for some real constant E((, q ) .  In terms of the associated momentum map J this 
relation can still he rewritten as 

( [E,vI ,J )  = ( ( E , J ) , ( v , J ) ) + C ( € , 1 1 ) .  
The map C : G x G -+ R is bilinear and skewsymmetric, and it is straightforward to 
verify that i t  is a real-valued 2-cocycle of G .  

is a symmetry of a local gradient 
vector field X on M, i.e. [FM,X] = 0 for each < E G ,  with X satisfying (3.4). We can 
then prove that the functions X ( J c )  are constant for all < and, as a matter of fact, 
the converse is also true. 

Proposiiion 6. A restricted Hamiltonian action, with momentum map J ,  is a sym- 
metry of a local gradient vector field X iff for each < E G it holds that X (  J c )  = e, for 
some constant E R. 

Proof. 
we see that 

Suppose the restricted Hamiltonian action 

Let X E X ( M )  be a local gradient vector field. Then, using (3.8) and (4.1) 

dX(J<)  = C X i c M u  
- - i [ X , c M ] u  + i C M L X W  

= x+ 0 [ X ,  € M I .  

- - i [ x ,<M1w + ( i [ % c M l g )  

Consequently, since xs,w is a bundle isomorphism, [ X , E M ]  = 0 iff dX(Jc)  = 0, from 
which the result follows. 0 
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Given any t ,  11 E 
that  

one easily finds, using (5.1) and ( 5 . 2 ) ,  and the previous proposition, 

%,I21 = L X ( J [ C , d  

= L x ( { J c ,  J12H 
= ~[x,IM1(Jo + 11&) 
= o  

since [ X ,  q M ]  = 0, by assumption, and e, is a constant. From this we infer that in the 
case where G is such that  [G, G] = G, in particular if G is a semisimple Lie group, the 
constants in the above proposition are all zero. We may therefore conclude with 
the following theorem. 

Theorem 4. If a restricted Hamiltonian action 0 : G x M -+ M of a semisimple Lie 
group G on a cosymplectic manifold ( M ,  0 ,  w ) ,  with momentum map J ,  is a symmetry 
of a local gradient vector field X ,  then J is a G'-valued first integral of X. If, fur- 
thermore, the conditions of theorem 2 are verified, then for any weakly regular value 
p of J ,  X is tangent to J - ' { p }  and projects onto the reduced cosymplectic manifold 
(P*,O,,,w,,). The projection is again a local gradient vector field. 

ProoJ The proof proceeds along the same lines as those of proposition 5 and t h e e  
rem 3. 0 

6. Some final r e m a r k s  

In this paper we have been dealing with a class of dynamical systems which, in ap- 
propriate coordinates, can be represented by a system of 271 i- 1 first-order ordinary 
differential equations of the form 

for some smooth function f(t ,q,p).  In several respects these systems reveal a striking 
resemblance to Hamiltonian systems on symplectic manifolds, at  least from a g e e  
metrical point of view. From the point of view of theoretical mechanics it must be 
conceded that, if t is to be regarded as the physical time coordinate, it is the evolution 
type vector fields E, = R + X, rather than the gradient vector fields that are of 
particular interest. From the definitions in section 2 we see that 

g rad f -E ,  = ( R ( f ) - l ) R  (6.1) 

and so the two only coincide in the special case where R(f) = 1.  As  far as the 
symmetry and reduction properties are concerned one may observe, however, that the 
treatment of section 4 also applies to evolution vector fields. Indeed, it has already 
been shown by Marle [5] that for group actions of the type considered in this paper 
(with R ( J )  = 0), which leave a function f invariant, the momentum map J will be 
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constant along the orbits of E,. It is also straightforward to check, using (6.1) and 
the results of section 4, that such an action will be a symmetry of E,. Hence, all 
ingredients are available to establish a reduction scheme for evolution vector fields 
with symmetry along the lines of theorem 3. 

Finally, we still note that the characterization of (local) gradient vector fields in 
terms of Lagrangian submanifolds (cf section 3) can be extended to  the case of gradient 
systems with constraints, following the analogous treatment of Hamiltonian systems 
with constraints as, for instance, in [8, 91. 

Acknowledgments 

This work was partially supported by a Research Grant from the National Fund for 
Scientific Research (Belgium) and by DGICYT-Spain, Proyecto PB88-0012. EAL 
also acknowledges invitations to the Consejo Superior de Investigaciones Cientificas 
(Madrid) and the Departamento de Matemitica Fundamental (La Laguna, Tenerife) 
where part of this work was conceived. 

References 

[l] Lichnerowicz A 1976 Topics in  Diflewntial Gcomctry ed H Rund and W Forbes (New York 

[Z] Lichnerowicn A 1979 Bull. Soc .  Moth. Belgique 31 105-35 
[3] Hamoui A and Lichnerowicz A 1984 J. Moth.  Phya. 25 923-31 
[4] Flato M, Lichnerowicz A and Stemheimer D 1975 J. Moth. Pures et  A p p l .  54 445-80 
[5] Marle C-M 1983 Symplrclic Geometry (Research Notes i n  Mathematics) ed A Crumeyrolle and 

[6] L i b e m  P 1959 C o l l o p e  de GComitric Diflinnliellc Globolc (Brurclfca 195d) (Paris: 

[7] 
(81 
[SI 
[lo] 

Ill] 

[12] 

[13] 
[14] 
[15] 

(161 

Academic) pp 57-85 

J Grifone (Boston: Pitman) pp 144-66 

Gauthier-Villars) pp 37-59 
Albert C 1989 J .  Geom. Phyr.  E 627-49 
Tulczyjew W M 1976 C.R. Acod. Sci. P a r i s  A 283 15-18 
Menzio M R and Tulczyjew W M 1978 Ann. Insl. H. PoincorC A 28 349-67 
Abraham R and Marsden J 1978 Foundations of Mechanics  2nd edition (New York: Ben- 

Liber-n P andMark C-M 1987 Syinplccf ic  Gcomelry and Anolyl icd Mechanics  (Dordrecht: 

Saunden D 1987 The Geometry of Jel Bundles (London Moth. Soc. Lccluw Notes  Series) 142 

Yano K and Ishihara S 1972 Tangent and Cotangent Bundler (New York Marcel Dekkeer) 
Aniculgesei G 1980 Rev. R o u n .  Moth.  Pvrea el Appl .  25 995-1002 
Benenti S 1983 P m e .  Inl. Meel ing  o n  Geomelry and Physics  ed M Modugno (Bologna: 

Carifiena J F and Ibort L A 1985 Nuovo Cimmlo 8 87 41-8 

j&n/Cummings) 

Rcidel) 

(Cambridge: Cambridge University Press) 

Pitagora) pp 11-41 


